Rapamycin-eluting stents in the arterial duct: experimental observations in the pig model.
نویسندگان
چکیده
BACKGROUND Maintaining arterial duct patency by stent implantation may be advantageous in congenital heart disease management algorithms. Rapamycin, an immunosuppressant drug that demonstrates antiproliferative properties and inhibits smooth muscle cell migration, may deter the intimal hyperplasia that occurs during spontaneous closure and after-stent implantation of the arterial duct. METHODS AND RESULTS Twenty-eight Yorkshire piglets (7 to 11 days old; weight, 2.2 to 4.9 kg) underwent stent implantation of the arterial duct (rapamycin-eluting (n=14) or bare metal (n=14) stents, 3.5-mm diameter) and were euthanized at 2, 4, and 6 weeks. Dissected arterial ducts were analyzed for lumen diameter, smooth muscle cell, and extracellular matrix components. Isolated arterial duct-derived smooth muscle cells were cultured in the presence or absence of rapamycin. Cellular proliferation rates were assessed by Ki-67 detection and [(3)H]-thymidine incorporation. No significant neointimal proliferation was present in either stent type at 2 weeks. At 4 weeks, the median luminal diameters of the bare metal stents were 87% (P=0.009), 54% (P=0.004), and 77% (P=0.004) that of the drug-eluting stents at the middle and aortic and pulmonary artery ends, respectively. At 6 weeks, the median luminal diameters of the bare metal stents were 0% (P=0.18), 5% (P=0.25), and 61% (P=0.13) that of the drug-eluting stents at the same respective levels. Complete histological occlusion was found in at least 1 level of the lumen in 9 pigs: 1 (17%) in the BMS group at 4 weeks, 5 (83%) in the BMS group at 6 weeks, and 3 (50%) in the DES group at 6 weeks. In vitro studies demonstrated 50%-lower proliferation rates in rapamycin-treated cultures of duct-derived smooth muscle cell cultures (P<0.001). CONCLUSIONS Rapamycin has antiproliferative actions on the arterial duct. Drug-eluting stents may be a more efficient tool than current palliative options for maintaining patency in critically duct-dependent states, but there may be a finite time-related benefit.
منابع مشابه
An advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries
Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...
متن کاملA three-dimensional mathematical model for drug delivery from drug-eluting stents
Current drug-eluting stent (DES) technology is not optimized with regard to the pharmacokinetics of drug release, more research on the <span style="font-size: 12pt; color: #000000; font-style: normal; ...
متن کاملPharmacokinetics of sirolimus-eluting stents implanted in the neonatal arterial duct.
BACKGROUND Sirolimus-eluting stents may have clinical advantages over bare-metal stents in the extremely proliferative environment of the neonatal arterial duct. However, sirolimus has immunosuppressive actions and little is known regarding sirolimus pharmacokinetics in the newborn. METHODS AND RESULTS This is a retrospective review of sirolimus pharmacokinetics in neonates who underwent siro...
متن کاملRapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents.
AIMS Drug-eluting stents (DES) may be associated with an increased risk for stent thrombosis when compared with bare-metal stents. In endothelial cells, rapamycin induces tissue factor (TF) by inhibiting the mammalian target of rapamycin (mTOR). However, the effect of mTOR inhibition on TF activity and thrombus formation in vivo has not yet been studied. Moreover, it is unclear whether second-g...
متن کاملSpecific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel.
Endovascular drug-eluting stents have changed the practice of medicine, and yet it is unclear how they so dramatically reduce restenosis and how to distinguish between the different formulations available. Biological drug potency is not the sole determinant of biological effect. Physicochemical drug properties also play important roles. Historically, two classes of therapeutic compounds emerged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 119 15 شماره
صفحات -
تاریخ انتشار 2009